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SUMMARY

Th.a similarity ruikefor lirwarizd comprewdle * theory
(~~th+?lf’$Tide Wld ii%SUpt7’8kC COU?ltWj?Wt) (We td+?.dd tO

8econd order. ]t is showm ‘Lhui any seed-order subsontifiw

can be relatd to “nearly incompreeea”li.djlow paxt the same
body, which can be cakulated by the Janzen-Rayleigh mdhod.

INTRODUCTION

The linearized small-disturbance theory of steady com-
pressible flow, based on the Prandtl-Glauert equation, yields
a first approximation for thin objects moving at either sub-
sonic or supersonic speeds. More precisely, it provides the
first term in an asymptotic expansion of the solution for
small disturbances, provided that the f3ight Mach number
is not too close either to unity (transonic flow) or to infinity
(hypersonic flow).

The similarity rule that governs linearized subsonic flow-
past general three-dimensional objec~ was first given cor-
rectly by Gdthert (ref. 1). It has an obvious counterpart in
supersonic flow, and the rules have rendered great service in
both theoretical and experimental &estigations.

Recently, various investigators have sought to improve
on the linearized theory by finding higher approximations
(see, e.g., refs. 2 to 5). The second step is commonly
referred to as the second-order small-disturbance theory, or
simply “second+rder theory.” It can be found in general
by iterating upon the linearized solution, retaining all terms
out of the full nonlinear equations of motion whose contri-
bution is of the order of the square of the disturbances in
linearized theory (ref. 3). In the simplest case of plane
flow without stagnation points, the linearized d.Mmrbancm
me proportional to the thickness ratio ~ of the airfoil, so that
second-order theory adds terms in +, and higher approxi-
mations cwtendthe seriesin powers of r“. Stagnation points
lead to tbe appearanw of logarithmic terms, begiming with
T% T in the fourth approximation. The series diverges in
the immediate vicinity of stagnation points, although it can
be corrected there by simple techniques (ref. 6). Slender
pointed objects, such as a smooth body of revolution, cause
smrdler disturbances than airfoils, but logarithmic td
nhvays arise at the outset; hence the linearized solution
contains terms of order A?n T and ?, and the second-order
increment then consists of terms of order AA, r41nr, and r4.
Nothing is known of the convergence of these series; they
are perhaps only asymptotic expansions for small thickness.
Second-order theory, like linearized theory, breaks down in
the transonic and hypersonic ranges, though it may pene-
trate somewhat farther into their fringes. ~

A similarity rule for second+rder theory has recently
been given in the special case of supersonic flow past thin
flat wings by Fenain and Germain, who demonstrate its
usefulnesa in theoretical studies (ref. 5). However, as in
linearized theory, the rulw for flat wings are only special
cases of those for general three-dimensional shapes. The
present paper is devoted to deducing the general rules for
subsonic and supersonic flows, and examinb g their implica-
tions. In particular, it is shown how the rule for subsonic
flow relates the second-order solution for any object to nearly
incompressible flow past the same body, which can be calcu-
lated by the Janzen-Rayleigh method.

The author is indebted to Wallace D. Hayes for suggesting
several improvements that have been incorporated in the
present version of this paper. In particular, the procedure
for recovering the second+mder solution from the Janzen-
Rayleigh solution (p. 930) is simpler and more logicxd than
that originally given iD NACA TN 3875.

DERIVATION OF RULES FOR BODDN3 OF REVOLUTION

A body of revolution is the simplest shape that is not a
special case, but displays the fdl generali~ of the existing
similarity rules for subsonic, supersonic, transonic, and hy-
personic flows. The same can be shown to be true of the
second+rder rules to be discussed here. Hence for clarity
of ~osition, the se&nd-order rules will be derived in
detail only for an tiymmetric body at zero angle of
attack. The rules for general three-dimensional thin or
slender objects will thereafter be stated without proof. The
subsonic and supersonic cases are so similar that they can
be treated simultaneously.

Let the body be described by r=rR(z), where 7 is a thick-
ness parameter or characteristic slope (say, the maximum
slope, average slope, thickness ratio, or the like), and l?(z)
is a function of order unity (fig. 1). As usual in similarity
analysis, the characteristic slope ~is regarded as a parameter,
so that dMerent values of 7 correspond to aflinely related
members of the same family of bodies.
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second order the flow is irrotationsl, so that there
a velocity potential @(x, ‘r; AZ, y, 7). This notation

indicates that for each family of bodies (associated with a
given function R(x)), the flow field is regarded as dependi@
not only upon the two independent variables x and r but
also upon the three parameters following the semicolon:

M free-stream Mach number
‘r adiabatic exponent of gas z
T characteristic slope of body

The aim of a similarity analysis is to transform the prob-
lem so as to reduce the number of parameter appearing ig
it. If that can be accomplished, flows having diiferent
values of the original parameter are related provided only
that the reduced parameters are equal. The transforma-
tion to be used here consists in separating the dependemt
variable @ into several components, and then stretching
each component and the independent variablea by factora
that depend upon the original parametem. It is convenient,
and involves no loss of generality, to leave stmamwise
coordinates unchanged, so that r is to be stretched but not Z.

Perturbation potentials are first introduced by setting

1%=~+++~+ . . “
(1)

where 4 is the potential of linearized theory, and q the
second-order increment.

EIJf.ESFOR LINEARIZED THEORY

The linearized problem is

❑ @= (l—MW=+A,+=O

4+ &tintiniQ-’

A= TR’ (z) at r=TR (x)

(2)

The ilrst relation is the linearized PrandtLGlauert equation.
The second is a statement, sufficiently definite for present
purposes, of the re@rement that the flow approach a uni-
form stream far from the body in ahnost all directions. The
third is the linearized condition of tangent flow at the body
surface.3 The linearized problem is seen not to involve y,
so that the solution depends upon only the two pammeters
M and ~.

The similarity rules can be obtained by ccmsidering arbi-
trary scnle transformations of + and r. It is readily found
that the only choice that reduces the number of parrmietere

~=SW has Pofded out(& 7) that to-d O&I en fm@e2t~ wrrEspmd9 to a

p31ytropIa KM having a T eqrreftothefmuhtam value of

wherec istheefw+d ofwmd andpthe denstty,the pmtlalderivative befngtakenat@nstant
entropy 8.

$h what h fJcnr5Jlly rafled the slender-hdy ap prdmatlen, the Mly LY—ed to be

sasrowth andskndert hetthet angmoycmditfm c-an behnmon theaxfsratlmtkm

on tbe acturd mrfem, for bedk of rmolntlon fn the form Zfm r~#R@)R~ (x). Thus

*O

slender-bedy thwry fs a furtherapproxfmatlm within lfn@r&d thmry (lMng, fn feet, the

leedfng twin hi the eqmptotlo eon of the Mnenrfzed wlntlon fer srnelf thfckIws 7).

Comwquently, the dondar%xiy Mntfon obeys the sfdarlty roles of Mnmrized theory, end

he mond+xdw alenddmfy soltrtkm Ukewlm obeys the s%mnd~or slnrthlty mk.

from two to one is (temporarily suppressing the dependence
on parameters)

@(z,T)=.@, p) (3(L)

and
P=@ (3b)

where

for subsonic flow
(3C)

for supersonic flow

Then the problem becomes

AF=FP,+$%F==O

F4 at infinity

FP=BTR’(Z) at p=&R(z)

(4)

where here and later the upper and lower signs rtpply,
respectively, to the subsonic and supersonic problems.

The transformations of @ and r have been so chosen that
the problem is reduced to one iiwolving the two pmunetom
M and ~ not separately, but only in the combination ST.
This is the similarity parameter. Two subsonic or supw-
sonic flow-s past bodies of the same family are related if
the corresponding Mach numbers are such that the param-
eter 13ris the same for both. The nature of the relationship
is found by reintroduc$g the dependence on paranmtem
into equation (3a), which gives the similarity rules

lFz4@c,T;fM,T)=p ( ,Br;BT) (5)

SECOND-ORDER lZULE9

The se~nd~rder problem is found to be (ref. 3)

at infinity

)

(6)

~,= Tr#rzR’(z) at r=rR(z)

Note that the first equation contains not only qundmtic
terms on the right-hand side, but also the triple proclucL
r#I~I#Jfiwhose contribution is of second order in some cases,

The parameter y appears only linearly in the combination
(Y+ 1) ~d can accordingly be separated out. Tlms tho
appropriate transformation is found to be

Then equating like powem of iLf2yields the following set of
thee problems for fl~,~z in which the parameters M,y,r
appear again only in the form of the single similarity prwnm-
eter /37:

Aj,=O

f,’+) at infinity
\

(sfL)

flp=&FzR’(z) at p=~TR(z) J
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Aja= &2F.F’+2173zP+FP%FPP

j,+o at infinity 1“(8b)

f,,=o at p=&R(x)

Af3=FzF=

f,+o at infinity 1 (8c)

fa=o at p= flTR(z)

Then reintroducing the explicit dependence on parameters
into the functions _f1~2~3of equation (7) gives the similarity
rules for the second+rder increment in perturbation po-
tential:

where the arguments of fj and f3 axe the same as those of
j,. Hereafter the arguments of later terms will be omitted
in this fashion when they are the same as for the leading
term. It should be emphasized that, just az in linearized
theory, the subsomc and supersonic rules are quite distinct,
although they have the same form (9). Because of the
different definitions of f?, and the resulting & signs in equa-
tions (4) and (8b), a supersonic flow is not related to a sub-
sonic flow. Discussion of these results is deferred to the
general case.

RULESFOR GENERALBODIES

Consider a family of general three-dimensional bodies,
whose members are derived horn’ one another by a uniform
magnification or reduction of all dimensions normal to the
free stream (fig. 2). Each member of such a family can be
characterized, as before, by some characteristic slope r. It
may be emphasized that r can be identified with thiclmess,
camber, or angle of attack, all of which vary together for
related bodies.

11’muRFI 2.—Example of two rehtod bodia

The preceding analysis can be extended in a s@ight-
forward way to such general bodies, at the expense only of
typographic complexity. Both cross-stream dimensions
behave in the way that r did before. Hence the subsonic
and supersonic seccmd~rder rules for the velocity potential,
corresponding to equations (5) -and (9), are, in Cartesian
coordinate:

“L@7)=z@ F(z,/?g,/3z;f%)++ @(%W%
m

1 [.fl(@v#z; BT)+J@X )+ (7+0 $ M )] (loa~—.
P’

Di.flerentiation yields the corresponding rules for velocity
components (those for w having the same form az for o):

;=1+Z7(Z, @,pz;@T) +
m

1 [Z@,@/,Bz;&)+~%( )+(~+1)~~( )] (lob)
P

—=? v x& ~ ( Yi%,@;B’)+

1 [tw’%pz;t?d+mb( )+(?’+0 $’%( )] (m
F

(The functionz appearing here are actually related to deriva-
tive of the functions in equation (lOa), but the connection
is of little interest.) To second order the pressure coefficient
is given by

c,=–2@=– (+~+~q –%Oz-2(#,%+hw) + (M–1)4.’+

fw~(~w’+~~) +*&P(f#lti’+@#z)z

where the terms in the second line may be significant for
slender shapes. Substituting the expressions (10) for veloc-
ity components and simplifying shows that thp similitude for
pressure coefficient has the same form m that for the stream-
wise velocity increment Au/U.:

~P(%Y,@f,7) ‘)=&(% &J#%B”) +[P1(W%, 1% P~)+

J&?h( )+(7+ 1)$’$%( )] (lOd)

The similari~ rules for the perturbation stream function
in plane flow are the same as those foi u/U_ (eq. (1OC)).

ALTERNATIVE FORMS

As with other similarity rules, an unlimited number of
alternative forms can be produced by multiplying by powers
of the similarity parameter. Thus, of the many possible
alternative to the second-order rules (lOd) for pressure
coefficient, two of the most useful are:

c’,=;%%, 19z;l%)+;[zi( )+~~’z( )+(7+1)*?3()-j
(lOe)

[
c2=T’3(z,B~,pz; BT)+T’ z, ( )+M?2( )+(7+1) $33( )]

(lOf)
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In addition, the fit two second-order terms can be manip-
ulated, using the connection between M and 19’,‘to yield
additional alternative forms such as the following, which
correspond to the three forms above:

(log)

[C,=;RW%JJ%%)++Zi()+$32’()+(?’+1) +$’13()]
(lOh)

cp=T’fi(z,Bu,Pz; BT)+T’[@PL( )+12’( )+(7+1)$53()]

. (lOi)
FORCE COEFFICIENTS

The rules for pressure imply rules for the lift and drag
coefficients. For example, equation (lOe) leads to

TLow-$pfk)+mb%)+(7+1) $ M%-)c!(fM,7,~)=~
1

.- (lOj)

+ U&)+;pl(l%)+mwd+(~+l)$$%m]CD(M,7,T)=p

(1Ok)

if the cdlicients are referred to some plan-fomn area. If
some cross-sectional area is used, each term is reduced by one
power of ~. Various alternative forms are again useful In
the case of lift coefficient, one fl ordinarily choose to
identify r with the angle of attack.

RULES FOR QUASI-CYLINDRICAL BODIES

A special class of objects must be distinguished, which will
be termed quasi-cylindrical bbdies. These are shapes that
lie ever~here so close tQ some cylinder (not necessarily
circular) parallel to the free stream that to a first approxi-
mation the condition of tangent flow can be imposed at the
cylinder rather than on the actual body mrface. Likewise,
in second+rder theory the tangency condition can be tmns-
ferred to the cylinder by Taylor series expansion. The sim-
plest example is an airfoil whose thickness, camber, and angle
of attack are so small that the tangency c@ition can be
transferred from the airfoil surface to a mean plane parallel
to the stream (@g. 3). Another example is an open-nosed

cG== ‘--- ‘-’:
—————..J’

//// / / //

777n+7-
FIWJEE 3.—Esamples of quasi-oylindricd bodies

body of revolution whose radius varies only slightly. Otlmrs
are biplanes, cruciform wings, any of these in an open or
closed wind tunnel, in combination with one another, etc.

A quasi+ylindrical body can be regarded as consisting of
a skeleton upon which is superimposed a small slope distri-
bution. The skeleton is simply the projection of the body
onto the basic cylinder. For example, the skeleton of tho
quasi-cylindrical body of revolution is the circular tube
shown dashed in figure 3. \

The speciil place of quasi-cylindrical bodies in similarity
theory arises from the fact that the skeleton and the slope
distribution can be varied independently. This extra
freedom is important. For example, it leads to a useful
tr~onic similarity rule for quasi-cylindrical bodies whereas
none exists for general shapes. It is convenient always to
leave strearntvisedimensions unaltered. Hence, we consichm
families of quasi-cyhlrical bodies that are derived from
one another by a lateral compression or exprmsion of the
skeleton, and a quite independent magnification or reduction
of aU surface s10pe9. Two members of such a farniIy are
shown in figure 4.

————_ ____ _ ——. ___
\
\

i J
——— _____ __ ——— —_— ‘;

——— ———. ——— — ——— —.

——_ _—— —— —. ——— ——

FI~URE4.—Exampleof tworelatedquasi-oylindrioalbodiu,

Distortions of the skeleton will be measured by some
characteristic “aspect ratio” A. It is importrmt to note
that the term “aspect ratio” is used here in a very gemmd
sense to mean any typical ratio of gross cross stream to
streamwise dimensions. For example, in the last shape
in figure 3, the ratio of wind-tunnel height to airfoil chord k
an appropriate characteristic aspect ratio. Changes of
slope are measured, as before, by some chamct eristic slope T,

The preceding similarity rules can be sirnp~ed for quasi-
cylindrical bodies by using the facts that iirst-orcler pw-
turbation quantities are directly proportional ~ to r, und
second-order terms to /. The simplithtion can be carried
mt by first imagining the quasi-cylindrical body to be
wstricted to be a general body, which means that both
3A and & must be the same for similarity. Then consider
the preceding rules in the particular alternative forms in
Aich 7 appears explicitly outside the iirst-order term and

4Th& is by no m@ms trne for general bxlicm; M notd previously, tba ilrat-order prmuro

036iOiElltOIi86MOOtbskndor @lted bOdy Of IOVOhltkIII ~ W ~n 7 foc 81TI~ r.
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# outside the second-order terms. For the pressure co-
efficient, this form is that of equation (lOe):

u,=; F(wwz; /wo+$ [M )+wz( )+(Y+Q 4$%3( )]

So far the functions ~,~,,~~,~, have been supposed to depend
parametrically upon both &4 and I%. However, the fket-
and second-order terms can be proportional to r and ?,
respectively, only if the supposed dependence upon @r is
nonexistent. Hence, the similarity parameter is PA alone,
and the rules for pressure are (dropping bars from the
functional symbols):

U,(%y,z; IM,7,T,A)=;P(X,PY,BZ;M) +; [2A%% M)+

MY,( )+(’r+l) +&%()] (ha)

The corresponding rules for the potential and velocity
components can, if desired, be written down by inspection
from equations (10).

With ~,=pz+pl (where, as before, the upper sign applies
to subsonic and the lower to supersonic flow), these rules can
be rmvritten as

[
OP=~P( )+# p,( )+f$ @,( )+(’r+l) ~p3( )] (llb)

and this is the result that Fenain and Germain found in their
treatment of the flat diamond cone in supemonic flow (ref. 5).

CONNECTION WITH HAYES’ RULE

For plane flow past a single body, Hayes has discovered a
remarkable rule for the second-order surfaca pressure (ref. 7).
It implies that, on the surface, the functions in equation
(1la) are such that p,=O and p,=4p,. Hence,

=~lyz)+r’ (7+1) M’+4(1–M’) ~(z)
c“” P 4(1—Ma)~

(12)

In supersonic flow this is simply Busenmm’s well-lmown
second+rder solution, F’ being twice the local slope of the
surface and PI twice its square; in subsonic flow P and PI are
more complimted (ref. 8). This rule implies a corresponding,
but more complicated, rule for surface velocity (ref. 8).

In addition to the restriction to single bodies and plane
flow, these rules are not similarity rules in the sense of the
preceding results, because they apply only at the surface
rather thrm throughout the field.

EXAMPLES

The rules will be illustrated by two simple examplw, a&
tention being confined to the surface pressure coedicient.

SLENDER CIRCULAR CONE IN SUPERSONIC FLOW

Broderick has derived the second-order slender-body
solution for a circukw cone at zero angle in a supersonic

stream (ref. 2). The surface pressure coellicient on a cone
of slope 7 is

c,’=’2@’n#-l)+T’Pfl(’n;Y
(5M’-1) ln;+:w+(y+l) 1$] (13)

This has the form of equation (lOi) with

2 2 13
5’=3 in’ li75 ln#z

~3=1

WAVY WALL IN CLOSED SCBSONIC WIND T~

Consider the sinusoidal w-ally=~ sin z at a distance h from
a flat wall (or a distance 2h from its mirror image) as indi-
cated in figure 5. Subsonic flow between the walls at a mean

Y

A
n

/ / / / f / / / / / / / / /

I

I :--y= rsn-lx
I
\\

o / x

Fmmm 5.—TVavy wall inwind turmeL

Mach number fM can be readily calculated to second order
by separation of variables. The resulting pressure coeffi-
cientt on the surface of the wa~ wall is .

The relevant aspect ratio is the height h (which is really a
multiple of the height-chord ratio, because of the choice of
scale for the wavy wall). Thus the result is seen to have the
similitude of equation (Ha). As the tunnel height increases
indefinitely, the last two terms disappear, and the remainder
follows the similitude of equation (12) for the surface of a
sin&leplane body.
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REDUCTION OF SUBSONIC PROBLEM TO NEARLY INCOM-
PRESSIBLE FLOW

In linearized theory, an important application of the
similitude is G6thert’s rule, which reduces any subsonic flow
problem to a related incompressible flow (r6f. 1). As the
rule is usualy stated, the incompressible flow is that past a
thinner ffiely related body. However, the incompressible
solution for one member of an aflinely related family of bodies
determines that for all other membem, so that the subsonic
flow may, if desired, be related to the same body rather than
a thinner one, and that viewpoint will be adopted here as
being the simplest.

In second-order theory, the explicit appearance of tans in
J@ and (~+ I)il& in equations (10) means that reduction to
an incompressible problem is impossible (except for the
special case of the surface of a singIe plane body, where eq.
(12) applies). The second-order problem can, however, be
reduce-d-to n nearly incompressibl~ flow.

Flows at low Mach numbers can be calculated
Janzen-Rayleigh method, which involves iterating
incompressible solution to obtain a power series
Thus the velocity potential is approximated by

+ @(z,?J,z;M,7,T) =@o(z,y,z; 7)+M%(z,v,z; ~)+
.

(’r+l)il!f%( )+M@3( )+ . . .

by the
on the
in w.

(15a)

The two terms in lM* are ordinarily considered together,
but for present purposes it is wsential to separate them
because only %2is required. This is fortunate because @Z
can be calculated almost as easily as %, whereas the deter-
mination of @3is much more ditiicult.

The small-disturbance and Janzen-Rayleigh series repre-
sent two diflerent asymptotic expansions of the actual solu-
tion. They are bdieved to complacent each other, so that
an expansion of the Janzen-Rayleigh solution for small
thickn- must be identical with the expansion of the small-
disturbance solution in powers of M, as has been veritied
in all worked examples. This fact permits the small-dis-
turbance solution to be recovered from the Janzen-Rayleigh
series. The converse is not true, however, except for bodies
without stagnation points, because the small-disturbance
expansion is not uniformly valid near a stagnation point.

PROCEDUREFOBRECOVERINGSECOND-ORDERSOLUTION

Another alternative form for the second-order veloci@ po-
tential of equation (lOa), which is useful here, is

+- @(z,y,z:M,7,T)= z+#F(@zJ,/9z;/37)+
.

+ [A()+$%()+(7+1) ‘$%()]
Jlol)

@ere F and f,, $, f, are not the same functions as in equa-
tion (lOa) but related ones; in the notation of equations
(lOh) and (lOi) they are actually fi and ~,, ja, t,.)

———

For presentpurposes itisuWecessaryto distinguishbetween

the fit-order term F and the secondarder increment fl;
combining them as F1=F+fl gives

The Janzen-Rayleigh solution is now to be manipulated
into this same form. The first three terms as given in equa-
tion (15a) are equivalent to

; @(z,y,z; M,i,T)=@o(z,q,z;T)+$%lo+.

()(7+1)$%( )+0 $! (16b)

which may be rewritten as

with
@o—x*.—

P

(16C)

(15d)

Finally, with the aid of

J-V=PY l+;=w~++$+0 ($)] 00

and corresponding expansions for z and t-, this may bo
re-exprmed as

~=$%(ww%sd+$$[%d)+!#@@ti()+

/32 1 lid~azo+g$%ro+(’7’+1)jji$%() (150)

which is the desired form. Here, for example, pO@Y(Z,W,@;Pr)
means @/by) w(z,y,z; r) evaluated at Z=Z, v=13y, z=flz,
and r=~r.

The secondarder solution is thus recovered from the
Janzen-Rayleigh approximation simply by calculating in
turn the expressions in equations (15d) and (15e). The
procedure can actually be expressed by a single equation
as follows. From the Janzen-Rayleigh approximation in tho
form of equation (15a), the second-order small-disturbance
solution is recbvered according to

{

‘%(z,y, z;7)—z M2 % y %-z+7++++”+‘=;4).+(9)J+}NV’17’
2+2
7-W

where ~. means @a(z,v,z; T) throughout, and subscripts
indicate differentiation.
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APPLICATION TO PARABOLA

As an a-ample, consider plane subsonic flow at zero angle
of attack past the parabola described by y=~& (fig. 6).

Y

FIG UIZEIf3.-Par-atwlaat zero angle of attack.

The Jmzen-Rayleigh solution including terms in (Y+1)M4
has been calculated by Imai (ref. 9). Although the velocity
potential is complicated, it simplifies when only second-
order terms in r are retained to

Here $,q me parabolic coordinates related to the Cartesian
coordinates bv.

K’-i’’)+id=(’+”)’
so that to second order

(18b)

In this case the expressionsgiven by equation (Hid) are

This cxarnple illustrates the fact that for planar systems
these terms are not of order unity in r. Then according to
equation (15e) the second-order small-disturbance solution is

where

(19b)

This remdt is of interest because it apparently cannot be
found directly. Plane smalldisturbance flows can be calcu-
lated easily if one adopts the thin-airfoil approximation of
tranefeming the boundary conditions to the line y=o by
Taylor series expansion, but that approximation fails near
round noses in the second approximation and, as a con-
sequence, divergent integrals arise (ref. 8). Instcad, one
can try to treat the round nose more carefully using con-
fornml mapping (cf. ref. 11, pp. 361–367), but the result is
found to be indeterminate to the extent of a multiple of
ln(~+~. This is the potential of a point source at the
origin, which is an eigensolution, the proper multiple of
which (appearing in eq. (19a)) is not determined by the
suggested method.

The seeond+rder increment in equation (19a) is seen
to include terms in ? in r, whose function is to render the
argument of the logarithm dimensionless. However, these
terms are simply constants, so that no logarithms of thick-
ness appear in the actual flow quantities such as velocity
and pressure. As remarked in the introduction, logarithmic
terms in thickness arise in the actual flow disturbances only
in the fourth approximation.

The secondarder small-disturbance solution for the stream
function can in the same way be extracted from Imai’s
Janzen-Ra>leigh solution, and the result is found to agree
with that calculated directly by Kaplan (ref. 10) using con-

formal mapping. It contains no terms in in T. (The direct
approach succeeds for the stream function, although it fails
for the veloci~ potential, because the tangency condition
is imposed on the mw flux, which is aflected by the above
eigensolution.) Then using the connections betmeen the
stream function and velocity potential, one can verify the
correctness of equations (19).

CONCLUDING REMARKS

UTILITY OF THE RULES

The second-ordar rub are scarcely suited for correlating
experimental ~ata, since tests on four related bodies would
be needed in order to isolate the four functions involved.
That they are, however, useful in theoretical analyses has
already been pointed out by Fenain and Germain in the
special *e of supersonic flow past flat wings (ref. 5). Pre-
vious investigators had calculated (erroneously, as it turns
out) the second-order solution for the flat diamond cone
shown in figure 7, and carried out numerical computations

<
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FIGURE 7.—)?lat diamond oona
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for three different Mach numbers and four valu~ of ,the
parameter L3tan X (reported in ref. 11). Because the latter
is the similarity parameter 13Aof equations (11), failure to
take advantage of the similitude resulted in three fold un-
necessary duplication of computing labor.

The reduction to nearly incompressible flow assumes im-
portance for bodies with stagnation points. The small-
disturbance assumption is violated, and, as was noted in
the example of the parabola, the second-order solution
consequently cannot be found directly. For bodies of
revolution the dficulties appear to be even more severe.
In such cases it is convenient to calculate the Janzen-Ray-
Ieigh solution, and from it tiact the true second-order
soIution by the procedure outlined above. This process
has been carried out for the paraboloid of revolution in
reference 12.

NONUNIFOE~INSUPERSONICFLOV?

It should be noted that in supersonic flow the similarity
rules may fail in localized regions. Shock waves or expan-
sion fans spring from corners and edgea, and in their vicinity
the formal integrationprocedure is not uniformly valid. The
similarity rules for surface pressure faiI locally when such
waves intersect other parts of the body, as in the case of a
triangular W@ with leading edges ahead of the Mach cone.
The rules for integrated lift and drUUare correct to fit
order, but may be in error in second-order terms. These
difficulties cm in principle be eliminated by straining the
coordinates according to Qghthill’s technique (ref. 13).

~TREE EXTENSIONS

The similarity rules can readily be extended to third and
higher order in the same fashion (except for additional com-
plications in supersonic flow because of the ultimate appear-
ance of si~wmt vorticity engendered by curved shock
waves). The similarity parameter remains unchanged; the
complexity arisiig in a proliferation of functions multiplied
by powers of (7+1) -il&n&zP. Likewise, the smaU-disturb-
ance solution to any order can be recovered from the nearly

incompressible solution provided by an appropriate number
of terms of the Janzen-Rayleigh solution.

AarEs AERONAUTICALLABORATORY
IVATIONALADVISORYCOMMITTEE FOR A.23R0NAuTIcB

M!OFFETTFIELD, CALIF., Oct. 18, IW’
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